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SUMMARY

Guided seismic waves in the water column can be energetic
events, especially at shallow depths. This paper investigates
guided-wave properties, their use, and filtering with the help
of physical modeling experiments. We investigate how dif-
ferent parameters (water depth, density of the seafloor, and
both P-wave and shear-wave velocity of the seafloor) affect
the guided-wave properties. A number of physical model-
ing experiments, at the ultrasonic surveying facilities of Allied
Geophysical Laboratories (AGL), are conducted. The physical
modeling data fit theoretical calculations very well. For a hor-
izontal or slightly dipping seafloor, extracting the shear-wave
velocity from guided-waves with a curve-fitting method is ac-
curately achieved. Both theoretical analysis and physical mod-
eling indicate that guided-waves obscure reflection data, which
makes removing guided-waves necessary. Because the normal
modes of guided-waves are less obvious in the f —k domain,
we design a dispersion curve filter in the phase velocity and
frequency domain (v — f domain). The filter is tested on the
physical modeling data. The results show enhanced reflections
and attenuated guided-waves, which can benefit further pro-
cessing and interpretation.

INTRODUCTION

Guided-waves are commonly found in seismic data from shal-
low water environments. With their relatively strong ampli-
tudes, they can obscure the reflections from deeper targets.
Note that these guided-waves interact with the seabed and there-
fore are sensitive to the shear-wave velocity of the subsurface
material. (Klein et al., 2005). So, studying guided-waves may
also benefit ocean-bottom seismic processing and interpreta-
tion.

In this paper, we first study the influence of different water
depth and physical properties (density, P-wave and shear-wave
velocity) in the marine environment on the dispersive spectra.
Then, similar to the MASW method developed by Park et al.
(1998), we extract some of the physical properties from the
dispersive spectrum of the guided-waves. Finally, we design
a dispersion curve filter in the phase velocity and frequency
domain to attenuate the guided-waves.

DISPERSION PROPERTIES

The dispersion equation of guided-waves in a layered model
was first given by Pekeris (1945) with the assumption that all
layers are liquid. Press and Ewing (1950) extended Pekeris’
development to an elastic sea-bottom. The dispersive equation

is:
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where H is the water column thickness, p; and p; are the den-
sity of water and seafloor, respectively, k, is the wavenumber
of nth mode, v is velocity in water, oy is the P wave velocity
of seafloor, 3, is the S wave velocity of the seafloor, ¢ is the
guided-wave phase velocity.

Adjusting different parameters in Equation 1 yields how sensi-
tive the dispersion curves are to these parameters, i.e. Vp/Vs,
Vs, p, h. The results are shown in Figure 1. Only one parame-
ter is changed, others remain the same: Water depth is 100 m,
sound velocity in the water is 1500 m/s, P-wave velocity of
the seafloor is 6300 m/s, Shear-wave velocity of the seafloor
is 3300 m/s, density of the seafloor is 2.7 kg/m?>. Only the first
mode is plotted.

We can see V p and density do not affect the dispersion curves
strongly, so they can be estimated from shot gathers or other
empirical equations and considered as known factors. The
depth of water does affect the dispersion curves, but it can be
determined accurately from bathymetric surveys. So, we are
left with one variable, the shear-wave velocity of seafloor, to
determine from the dispersion curves of guided-waves.

PHYSICAL MODELING

Figure 2 shows the physical modeling system that we used at
Allied Geophysical Lab, University of Houston. We employed
an aluminum block as the hard sea floor. The P-wave and S-
wave velocity and density of aluminum block are 6200 m/s,
3258 m/s, and 2.7 kg/ m?>, respectively, which are similar to
basalt (V p = 6300 m/s, Vs = 3200 m/s, density=2.4 kg/m>).
The survey design of the experiment is shown in Figure 3. The
central frequency we used is then 30 Hz. The experiment was
designed in 2D cylindrical coordinates. The source, receiver
and the apex are in the same plane. Different water depths are
for 45 m to 100 m are surveyed.

The shot gathers are shown in Figure 4. The classic guided-
wave fans are observed in both shot gathers. The data show
guided-waves have very strong amplitudes and obscure the
reflections from the water bottom. The dispersion curves of
guided-waves can be nicely identified in the phase velocity-
frequency domain (v — f domain) with a wavefield transform
(McMechan and Yedlin, 1981; Park et al., 1998). Figure 5
shows the dispersion curves of guided-waves (data from Fig-
ure 4) using the method of Park et al. (1998). In physical
mdoeling, we know every parameter precisely. Therefor we
can calculate the theoretical dispersive curves with Equation
1 and then overlap the theoretical curves with the dispersive
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Figure 1: The sensitivities of dispersion curve on different pa-
rameters, i.e. Vp/Vs value, p, Vs, h. Only the first mode is
plotted here. (a) Vp/Vs is changed from 1.5 to 3.5. (b) p is
adjusted from 1250 kg/m? to 3750 kg/m3. (c) Vs is changed
from 2480 m/s to 3720 m/s. (d) Water depth is changed from
45 m to 150 m.

Figure 2: The physical modeling system used for marine
guided-waves modeling. The gantry, source and receiver, plus
model are shown. The source is placed in the center of the
block and receiver is moved away from the source. The dashed
line arrow indicates the moving direction of the receiver.
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Figure 3: Physical modeling geometry.  Offset range:
200~3500 m, Receiver interval: 10 m. Two different water
depths are simulated: 45 m and 100 m. The dashed line arrow
indicates the moving direction of the receiver.

spectrum of physical modeling data. The theoretical calcula-
tion fits the experimental data very well. The dispersion curves
of different water depths indicate that water depth not only ef-
fects the shape of certain mode in dispersive curve, but also
effects the interval of different modes. Given a certain fre-
quency range, the more shallow the water column, the fewer
modes received.
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Figure 4: Shot gathers from physical modeling data. Left:
100 m water depth. Right: 45 m water depth. The arrows
indicate the guided-waves.

EXTRACTING SHEAR-WAVE VELOCITY

We discuss the possibility of extracting shear-wave velocity
from the guided-waves. As shown previously, Vp, p, and wa-
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Figure 5: Dispersion plots for different water depths overlying
a flat seafloor. The blue curves are the theoretical calculation.
(a) 100 m water depth. (b) 45 m water depth.

ter depth can be considered as know factors, thus shear-wave
velocity is the only one unknown parameter in the dispersion
equation. Extracting the shear-wave velocity of seafloor from
guided-waves can be cast as least-squares problem by mini-
mizing the residual between the dispersion curves from the
data and a predicted dispersion curves from the shear-wave
velocity (Levenberg, 1944; Marquardt, 1963). We solve this
problem iteratively by finding Vs such that:
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where ¢?@@ phase velocity corresponding to certain frequency
from the data, F%¢ is the observed dispersion curves, and
F(Vy,c%4) s the predict dispersion curves from ¢4%® and es-
timated V.

The Jacobian matrix is calculated with the finite difference
method (Gavin, 2011). The Levenberg-Marquardt method can
solves this problem efficiently given a good estimated initial
shear-wave velocity. However, the dispersive spectra can some-
times be noisy, making the estimation of initial shear-wave ve-
locity less accurate. To achieve a more rapid convergence, we
use the trust-region-reflective method (Coleman and Li, 1994,
1996a,b), which is similar to Levenberg-Marquardt method,
except that the bound is updated from iteration to iteration
(Yuan, 2000).

Figure 6 is the cure-fitting results with the data from Figure 5.
In Figure 6(a) (100 m water depth), we picked first five modes
as input data. In Figure 6(b) (45 m water depth), only first three

modes are picked because of the weak amplitude in higher
modes.
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Figure 6: Curve-fitting and shear-wave velocity extraction re-
sult. (a) 100 m water depth. (b) 45 m water depth. The dots
are picked from physical modeling data from two experiments
with different water depths. The solid curves are final calcu-
lated dispersion curves.

The lab measurement of shear-wave velocity of seafloor (from
direct transmission measurements) is Vs = 3158 56 m/s. The
curve-fitting of physical modeling data yield 3157 m/s (100 m
water depth) and 3181 m/s (50 m water depth). Considering
the error of the lab measurement, the extracted result from the
guided-waves is reasonable.

DISPERSION CURVE FILTER

From the above discussion, we can see that the normal modes
of the guided-waves have significant influence on marine seis-
mic data. After parameters estimation from the guided-waves,
their removal is the goal. The f — k filter is a workhorse in at-
tenuating dipping noise. To identify the guided-wave signature
in the f — k spectrum, we transform the theoretical calculation
of dispersion curves of only the guided-waves (only the nor-
mal modes) and the full spectrum (both the normal modes and
the leaky modes). Figure 7(a) shows the results. In the low
frequency range, all events overlaps together. The difference
between the normal mode spectrum and the full spectrum is
small. Some of the normal modes even overlap with the leaky
modes. As mentioned before, the real part of the leaky modes
is the Scholte waves. It is difficult to separate the guided-waves
in the f — k spectrum from the Scholte waves. The converted
reflections and refractions cut through the normal modes and
leaky modes. So, for multicomponent seismic data, attenu-
ating guided-waves without damaging converted wave signal



in f —k domain would be very challenging. Transferring our
physical modeling data (100 m water depth) into f — k domain
(the left figure in Figure 7(b)), with the blurring effect in the
real data, we find the guided-waves, different reflections, and
the refractions superpose, which makes the isolation of guided-
waves in f —k domain even more difficult.
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Figure 7: Transferring the dispersion curves into the f — k do-
main. (a) the normal modes and leaky modes, blue curves are
normal modes, red curves are leaky modes, black dashed lines
are P—wave and converted wave refractions, green curves are
P—wave and converted wave reflections. (b) f —k spectrum of
physical modeling data (100 m water depth).

Because the f — k filter is unlikely be completely satisfactory,
we seek a new way to filter. The normal modes and leaky
modes are well separated in the v — f domain (Pekeris, 1945;
Press and Ewing, 1950). Moreover, different modes of normal
modes are also well separated. We design a filter in the v — f
domain. McMechan and Yedlin (1981) developed a method of
transferring the shot gather into slowness-frequency domain
(p — ). Their method requires long offsets and wide incident
angles, which is appropriate for our marine case.

According to previous section, all the parameters can be con-
sidered as known (V p, p, h) or well estimated (V's). So, calcu-
lating the dispersion curves of guided-waves and masking data
along these curves in the v — f domain with these curves will
largely reject the guided-waves while minimizing attenuation
of other events.

To test our method, we applied this masking filter on our physi-
cal modeling data set, both 100 m and 45 m water depth (Figure
8). No gain enhancement is applied to the data. As we can see,
the guided-waves (indicated by the arrow) are attenuated quite
well. Because the guided-waves contain considerable energy
in the shot gather, after applying the dispersion curve filter, the
energy of reflection and refraction become more distinct.

CONCLUSIONS

Guided-waves can obscure reflections in marine seismic data,
but they carry information about the seafloor. These guided-
waves are well observed in physical modeling data. The dis-
persion curves from the physical modeling data match theoret-
ical calculations very well. The shape of the guided-wave dis-
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Figure 8: Comparison between original (left) and filtered
(right) shot gathers. (a) 45 m water depth. (b) 100 m water
depth.

persion curve is largely determined by the shear-wave velocity
of the seafloor and is not sensitive to other physical parameters.
We are able to extract the shear-wave velocity of the seafloor
from the guided-waves with a least-square based curve-fitting
method. Existing filtering techniques may have difficulty sep-
arating the normal modes energy from other events. We de-
veloped a dispersion curve filter. The filter is tested on two
physical modeling data with different water depths. The re-
sults show that this dispersion curve filter works very well and
may benefit further processing and interpretation.
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